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Abstract - An analytical study is made of the laminar flow and heat transfer in ducts whose cross section is 
bounded by a wall with periodic corrugations distributed across the span; the other bounding wall is parallel 
to the corrugated wall and is plane. The study consists of two parts, the first of which is aimed at providing 
basic heat transfer and fluid Bow results while the second utilizes and illuminates these results by means of 
performance evaluations and comparisons. The basic results, determined nurn~~~ly, encompass Nusselt 
numbers, friction factors, isoveb and isotherms, and cross sectional mass flow distributions. For the 
performance evaluations, comparisons were made between the corrugated-wall duct and the parallel plate 
channel. It was demonstrated that if the temperature of the duct wall is to be minimized, as in an air-operated 
solar collector, a corrugated duct can be highly effective, but at the price of additional surface. area and greater 

duct height. 

NOMEN~~TURE 

cross sectional area; 
cross sectional area of triangle bounded 
corrugations ; 
height of clearance gap, Fig. 1; 
specific heat ; 
equivalent diameter, equation (2); 
friction factor, equation (13); 
height of parallel plate channel; 
height of corrugations, Fig. 1; 
thermal conductivity ; 
mass flow rate; 
flow rate through area A&; 
Nusselt number, equation (16); 
pumping power, (k/~)Ap; 
pressure ; 
heat-transfer rate per unit axial length; 
average flux at heated surface; 
Reynolds number, iiDe Jv ; 
surface area of heated wall ; 
temperature; 
bulk temperature; 
temperature of corrugated wall; 
wall temperature; 
dimensionless velocity, equation (1); 
mean value of U, equation (Q 
axial velocity; 
mean axial velocity ; 
dimensionless coordinate, x/D,; 
dimensionless coordinate, y/D,; 
spanwise coordinate; 
normal coordinate; 
axial coordinate. 

Greek symbols 

a, corrugation angle, Fig. 1; 
e, dimensionless temperature, (T - T~~)/(~/k); 
e br bulk value of 8; 
Lc9 viscosity ; 

V kinematic viscosity ; 
P. density. 

Subscript 

0, parallel plate channel, 

INTRODUffION 

THERE is a rich variety of duct cross sectional shapes 
that are of heat transfer interest, as witnessed by the 
Shah-London monograph [l] where the world litera- 
ture on laminar duct-flow heat transfer has been 
brought together. That monograph not only displays 
the abundance of information available for various 
cross sections but also provides, by omission, per- 
spectives on important classes of flow configurations 
whose characteristics remain unexplored or are only 
partially explored. One such class encompasses ducts 
whose flow cross section possesses spanwise per- 
iodicity. An example of such a duct is pictured in cross 
sectional view in Fig. 1, with the direction of fluid flow 
being perpendicular to the plane of the figure. As seen 
in the figure, the upper boundary of the duct is a 
spanwisaperiodic corrugated wall while the lower 
wall is plane. These walls thus define a flow cross 
section which is spanwise periodic. 

The spanwise-periodic corrugated duct shown in 
Fig. 1 is the focus of the present research. The research 
consists of two interrelated parts. In the first, basic heat 
transfer and fluid flow information, encompassing the 
Nusselt number, friction factor, mass flow distribution, 
and velocity and temperature fields, is obtained from 
numerical solutions for a range of values of the 
corrugation angle and the dimension ratio c/h (see Fig. 

FIG. 1. Spanwise-periodic corrugated duct. 
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1 for nomenclature). Then, in the second part. this 
basic information is employed to compare the perfor- 
mance of spanwise-periodic corrugated ducts of va- 

rious corrugation angles and dimension ratios with 

that of other ducts which might serve as alternatives 

for the same application. These comparisons are made 
for practice-oriented scenarios where performance 

objectives and constraints are specified. 

The concern of the present paper with performance 
evaluation is somewhat unusual in that the over- 

whelming majority of research publications on duct- 

flow heat transfer (e.g. those cited in [l]) do not go 

beyond the reporting of the basic results. The present 
concern with performance stems from the realization 
that the spanwise-periodic corrugated duct can be 

regarded as an enhanced geometry and it is, therefore, 
logical to examine the degree of enhancement that can 
be attained. 

That the corrugations provide the possibility of 
enhancement can be recognized by envisioning the 

corrugated wall of Fig. 1 replaced by a plane surface 
that is parallel to the lower wall. By comparing the 

surface area that would be washed by fluid passing 
through the corrugated-wall duct and the parallel 
plate channel, it is evident that the corrugations 
increase the surface area. The area increase serves to 
increase the capacity of the surface to transfer heat or, 
alternatively, enables the transfer of a given amount of 
heat at a lower wall-to-bulk temperature difference. 
There are, of course, fluid flow considerations that 
have to be dealt with, and these will be taken into 

account in the quantitative performance evaluations 
to be described later. 

In connection with the aforementioned surface area 
enhancement, it is relevant to observe that the authors’ 
first exposure to the spanwise-periodic corrugated duct 

was via an air-operated solar collector application 
where such enhancement was being sought [2]. In the 
design of flat-plate solar collectors with air as the 

transfer fluid, cognizance has to be taken of the fact 
that the fluid-to-surface heat-transfer coefficients are 

much smaller than those in water-operated collectors. 
Therefore, to transfer the same amount of heal at a 
comparable temperature difference between the fluid 
and the collector plate, the transfer surface area in an 
air-operated collector has to be much greater than that 

in a water-operated collector. 

Typically, in present-day air-operated flat-plate 
collectors, the flow passage is a parallel plate channel 
bounded above by the collector plate and below by an 
insulated wall. Based on available information [3], a 
channel Reynolds number of 2300 was calculated as 
corresponding to one of the standard operating modes. 
This suggests laminar flow, especially since it was 
demonstrated in [4] that transition to turbulence in a 
parallel plate channel occurs at Reynolds numbers of 
2600 or greater if the sources of disturbance are not 
situated within the channel proper. 

Although some consideration will be given to the 
aforementioned solar collector application, all of the 

basic results to be presented here are compietel! 
general. The performance evaluations will make use of 
the collector application as a focal point, bu? the 
conclusions drawn from the performance comparisons 
can be given broader significance 

From an examination of Fig. 1. it is seen that certain 
symmetries prevail so that the solution domam can be 

restricted to the speckled region. This region dots not 

fit conveniently into any standard coordinate systcnt, 
Even if the inclined boundary is approximated in a 

staircase fashion, the resulting solution domatn I, 
unacceptable to most general-purpose finite difference 

computer codes, which are structured to work with 
domains that are rectangles. To deal with this ~ttu- 

ation, use will be made of a technique recently 

suggested by Patankar [S] which will enable the 
solution domain to be transformed into a rectangle. 

Solutions will be obtained for fully developed la- 

minar flow and heat transfer. The thermally developed 
state to be treated here is the result of a heat input at 
the corrugated wall which is uniform per unit of length 
in the axial direction. In any cross section, !he 
temperature of the corrugated wall ts spanwisc uni- 
form. The lower wall of the duct is adiabatic. The 

solutions, obtained via numertcal finite differences, 
depend on two parameters the corrugation angle J 
and the dimension ratio c/h. Values of J were assigned 
as 20, 40, 60, and 90”. For each angle. c/h was varied 
systematically between zero and one. Typically, about 
ten c;‘h values were required to accurately define the 
variation of the Nusselt number and friction factor 
over this range. 

A search of the literature did not reveal anq prior 
results for the spanwise-periodic corrugated duct. 
With regard to spanwise-periodic ducts in general, a 
broad definition might encompass tubes with internal 
fins and tubes with circumferentially periodic surface 
waviness -cited in [l]. Also available in [l] are results 
for the parallel plate channel and for isosceles trt- 
angular ducts that will be employed in subsequent 
sections of the paper. 

ANALYSIS 

To facilitate the problem formulation. the typical 
module which constitutes the solution domain is 
shown in Fig. 2 along with the coordinates and other 
nomenclature. At this juncture, the solution domain is 
defined by the region ABCEA, but it will be modified 
during the course of the analysis. 

The governing equations for the velocity- and tem- 
perature problems encompass the conservation laws 
for mass, momentum, and energy. For constant-, 
property, incompressible flow, the velocity problem 
can be solved without reference to the temperature. To 
obtain a dimensionless representation of the velocity 
field equations, new variables are introduced as 

follows 
X = x/D,, Y = y/D,, U = u;[:( -dp/dz)D:/p] (1 I 

where x and J are the cross sectional coordinates as 
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FIG. 2. Typical module of duct cross section 

depicted in Fig. 2, and z is the axial coordinate. The 
equivalent diameter D, appearing in equation (1) is 
given by 

D, = 4h(c/h + $)/[l + cosec(a/2)]. (2) 

Consistent with fully developed flow, the axial 
pressure gradient dp/dz is a constant, the transverse 
velocity u = 0, and the inertia terms vanish identically. 
For these conditions, the mass conservation equation 
reduces to dU/dz = 0 and momentum conservation 
becomes 

a2ujax2 + awlar2 + i = 0. (3) 

For the formulation of the energy equation, note is 
taken of the uniform heating Q’ per unit axial length at 
the inclined surface CE and of the adiabatic condition 
at the lower wall AB and on the symmetry lines BC and 
AE. Since aTJi?z = aT,/& in a thermally developed 
uniformly heated flow, then 

aT/az = ~'fritc,. (4) 

As indicated earlier, the temperature at the cor- 
rugated wall is assumed to be spanwise uniform, but 
there is a linear variation in the axial direction in 
accordance with equation (4). At a representative axial 
station in the thermally developed regime, the tem- 
perature of the corrugated wall may be denoted by T,, 
and, with this, a dimensionless temperature f3 is defined 
as 

0 = (T - TJ(Q’Ik). (5) 

Since both T and T,, vary linearly with z in the same 
manner, the quantity (T - T,,) is independent of z, as 
is 8. However, both T and 0 vary with x and y. 

With the foregoing inputs, the energy equation takes 
the form 

(U/B)F(a,c/h)= a2e/ax2 + a2e/ay2 

in which 

(61 

F(a, c/h) = 16(c/h + $1 

[l + cosec(a/2)]‘tan(a/2) (7) 

and U is the dimensionless mean velocity defined as 

o=jUdA/jdA (8) 

where the integrals are evaluated over the flow cross 
section. 

The governing equations (3) and (6) for the velocity 
and temperature fields are supplemented by the fol- 
lowing boundary conditions 

On AB: U =0 and a0/aY =0 (9a) 

On BC: au/ax = aejax = 0 P) 
On CE: U=O and 8=0 (9c) 

On EA: au/ax = aelax = 0. (94 
The coordinates of the aforementioned boundaries 
involve both a and c/h, and these quantities also 
appear directly in equation (6). Therefore, the sol- 
utions depend parametrically on assigned values of a 
and c/h. 

In view of the shape of the solution domain ABCEA, 
it is clear that an analytical solution is out of range. A 
finite difference approach can be used to yield results of 
high accuracy by approximating the inclined boun- 
dary CE in a staircase manner as indicated by the 
representative segment shown in Fig. 2. Although such 
an approximation provides a solution domain whose 
boundaries coincide with coordinate lines in a Car- 
tesian system, the domain is not a rectangle. This 
characteristic does not fit very well with the capabi- 
lities of many general-purpose computer codes which 
are structured to deal with domains which are 
rectangles. 

By employing a technique recently devised by 
Patankar [S], the solution domain can be transformed 
into a rectangle, thereby enabling solutions to be 
obtained by application of general-purpose finite 
difference codes. The solution domain to be used here 
is the rectangle ABCDEA, on whose boundaries the 
following conditions are assigned 

On AB: U=O and ae/aY=O (loa) 

On BC: au/ax = aejax = 0 VW 
On CD and DE: 

U=O and 0=0 (1tN 

On EA: au/ax = aejax = 0. (104 
The rectangular region is envisioned as being filled 
with a fluid having the following properties 

In ABCEA : p and k have values equal to 
those of the actual fluid (lla) 

InCDEC: /*=cc andk=co (lib) 

where it is now understood that there is a staircase line 
connecting points C and E. 

The spwification of p = cc (llb), coupled with 
boundary condition (lOc), suppresses all motion in 
region CDEC and makes U = 0 on the line CE. 
Similarly, the use of k = CC in CDEC causes 0 to be 
zero along CE. It is important to note that CE is an 
internal line in the transformed domain and no 
conditions are actually imposed along it. 
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The transformed problem is characterized by a fluid 
having stepwise discontinuities of viscosity and ther- 
mal conductivity, and provision has to be made in the 
finite difference representation to accommodate such 
changes. In [5], on the basis of limiting cases and 
numerical examples, Patankar recommended that 
the harmonic mean viscosity and thermal conductivity 
be used. Thus, for example, at the interface between 
two control volumes having viscosities pi and pi+i 
respectively, the harmonic mean viscosity is given by 

pL= 2PiPi+ll(Pi + Pi+l) (12) 

and similarly for the thermal conductivity. This ex- 
pression was used to evaluate the viscosity (and 
thermal conductivity) at all control volume faces, but 
its special attributes were activated only at discon- 
tinuity surfaces. 

The finite difference scheme employed here has been 
accorded book-length description in a forthcoming 
text [6], and no elaboration is necessary here aside 
from that of the foregoing paragraphs. With regard to 
the finite difference grid, 25 x 48 points, respectively for 
the x- and y-directions, were used for the case of c/h = 0 
(i.e. for the triangular duct). With increasing values of 
c/h, the points were redeployed into a 20 x 70 distri- 
bution. The solutions were iterative but convergence 
was rapid owing to a block iteration procedure. The 
results of certain accuracy tests will be discussed 
shortly. 

FLUID FLOW AND HEAT-TRANSFER 
RESULTS 

The two quantities that are of most direct applica- 
bility are the friction factor and the Nusselt number. 
Results for these quantities are presented in this 
section of the paper, as are velocity and temperature 
contour diagrams and distributions of mass flow. 

Friction factor and Nusselt number 
The friction factor is evaluated from its customary 

90 

definition 

f = ( - dp/dz)D,jj pu* (13) 

which becomes, in terms of the variables of the analysis 

fRe = 216 (14) 

where the dimensionless mean velocity U is from 
equation (8) and 

Re = UD,,‘v. (15) 

An average heat-transfer coefficient for the c‘or- 
rugated wall may be defined by noting that the rate 
of heat transfer per unit surface is Q’/li sec(aL?) = 4‘. 
The average Nusselt number then follows as 

Nu = Cq/(Tpw - J-,)lD,ik (16) 

or 

Nu = - [(D,/h)cos(a/2)]&, (16a) 

where De/h is expressed by equation (2) and the 
dimensionless bulk temperature Qb is computed from 

0, = j BU dA/] L’ dA. (17) 

The fRe product evaluated from equation (14) is 
plotted in Fig. 3 as a function of the dimension ratio 
c/h, with the corrugation angle a as curve parameter. 
From the figure, it can be seen that an increase in the 
clearance gap between the corrugated and plane walls 
has a somewhat different effect on f Re depending on 
the corrugation angle. For a = 90”, the fRe curve 
increases monotonically with c/h, although at a lesser 
rate at larger c/h. On the other hand, the curve for 
a = 20” decreases monotonically and substantially 
after attaining an initial maximum. The results for the 
other cases display an intermediate behavior. 

In appraising the impact of these trends on the 
pressure drop, it is important to take note of the fact 
that the observed changes in f Re may be caused by 
various factors. Suppose, for instance, that the clea- 
rance c is increased for fixed values of h and a. For these 

a.= 90” 

80 - 60” 
--------- 

1_ 

c/h 

FIG. 3. Friction factor results. 
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FIG. 4. Nusselt number results. 

conditions, equation (2) shows that the equivalent 
diameter D, increases with increasing c/h ; this increase 
is much more rapid at large corrugation angles than at 
small corrugation angles. Since D, appears linearly in 
the friction factor, its increase with c/h tends to 
promote the same behavior infRe at a fixed Reynolds 
number. 

From a replot of the friction factor results (not 
shown here), it was found that the pressure gradient 
group (-dp/dz)/ipti* decreases with c/h for fixed 
values of h, CL, and Re. With this information, the shapes 
of the curves of Fig. 3 can be rationalized in terms of 
opposing influences of D, and ( - dp/dz)/$pti* with c/h. 
Clearly, the former wins out at higher a values, with the 
opposite outcome at the smaller t( values. 

Attention will now be turned to the Nusselt number 
results of Fig. 4. In this figure, Nu is plotted as a 
function of c/h for parametric values of tl. From an 
examination of Figs. 3 and 4, it can be seen that the 
trends that were identified in the former are also in 
evidence in the latter. Furthermore, the competing 
ingredients which influence the friction factor results 
have their counterparts for the Nusselt number. In 
particular, for given values of h and a, the heat-transfer 
coefficient decreases with c/h while D, increases. There 
is a greater downsloping tendency in evidence in Fig. 4 
than in Fig. 3, suggesting that the heat-transfer 
coefficient decreases somewhat more rapidly with c/h 
than does (- dp/dz)/fpti*. 

Whereas the pressure group and the heat-transfer 
coefficient respond in a qualitatively similar manner to 
changes in c/h and a, the impact of these responses on 

- 
* Initially, it was planned to use OL = 90 and 20”, but the 

narrowness of the 20” case prevented a clear portrayal of the 
results. 

design decisions remains unclear. This matter will be 
revisited later in the paper, when performance eva- 
luations are presented. 

Before concluding the friction factor and Nusselt 
number presentation, mention may be made of certain 
comparisons with the literature. The only possible 
comparisons are for the case of c/h = 0 (isosceles 
triangular ducts). Analytical solutions for the 60” and 
90” ducts, reported in [l], gavefRe values that differed 
by about 0.5% from the present numerical solutions. 
This level of agreement is satisfactory for any con- 
templated application. Higher accuracies are expected 
for cases where c/h > 0 since the portion of the 
solution domain between y = 0 and y = c is truly 
rectangular. The available heat-transfer results for 
isosceles triangular ducts are based on finite difference 
solutions. Nusselt numbers obtained with the present 
computer program agreed with results tabulated in [l] 
in the range from 0 to 0.6%. Upon recognizing that 
both sets of compared solutions are necessarily in- 
exact, this level of agreement is entirely satisfactory. 

Isovels, isotherms, and mass frow distributions 
Insights into the nature of the velocity and tempera- 

ture fields and their response to a and c/h can be 
obtained by examining contour diagrams which show 
isovels and isotherms. The presentation of results will 
be made for two corrugation angles*, a = 90 and 40”, 
and for each angle information will be presented for 
the smallest and largest of the investigated values of 
c/h, namely, zero and one. 

Figures 5(a) and (b) display the isovels and iso- 
therms for IY = 90”, respectively for c/h = 0 and 1. In 
each figure, the isovels appear at the left and the 
isotherms at the right. The plotted isovels are actually 
contours of u/ii while the isotherms are contours of 
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(a) 

b) 

FIG. 5. (a) Isovels u/U (left) and isotherms B/t), (right) for c( = 90” and c/h = 0; (u/U),,, = 2.26 and 
(0/Q,),,, = 1.61. (b) Isovels and isotherms for a = 90” and c/h = 1; (u/u‘),., = 1.74 and (0/o,),,, = 1.44. 

(T- T,,)/(T, - T,,) = Q/t+, ; the curve labels cor- 
respond to values of these quantities. The locations of 
the maximum values of u/ii and Q/0, are indicated in 
the respective diagrams by a short tic, with the values 
themselves being stated in the figure captions. 

In general, the isovels and isotherms are of a 
somewhat different character owing to the difference 
between the boundary conditions at the lower boun- 
dary (y = 0). The zero velocity condition at that 
boundary, in contrast to the zero derivative for the 
temperature, gives rise to variations of u/U that are 
more rapid than those oft?/&. Furthermore, whereas 
the isovels are more or less parallel to the lower 
boundary, the isotherms are perpendicular to that 
boundary. In addition, (u/U),,, is larger than (e/0,),,,. 

Comparison of Figs. 5(a) and (b) show that the 
presence of a substantial clearance (i.e. c/h = 1) causes 
numerous changes in the contour diagrams relative to 
the no-clearance case (c/h = 0). The variations of both 
the velocity and temperature are more gradual and the 
respective peak values are lower. Furthermore, the 
contour lines are no longer closed ; rather they connect 
with mirror-image curves at the symmetry boundary. 

Of particular interest is the fact that the point of 
maximum velocity and the surrounding high-velocity 
contours are situated in the clearance space below the 
corrugations, suggesting that a relatively large fraction 
of the total mass flow passes through that region. This 
issue will be revisited shortly. 

The contour diagrams for the cx = 40” case are 
presented in Fig. 6 for both c/h = 0 and c/h = 1. As 
before, for each c/h, the velocity is at the left and the 
temperature is at the right. Except for their elongation, 
the4O” contours for c/h = 0 are similar to thosefor 90”. 
The 40” contours for c/h = 1 also exhibit general 
similarity with the 90” contours, but there are interest- 
ing differences in detail in the lower part of the flow 
passage. In particular, for the 40” case, both the isovels 
and isotherms are horizontal lines, indicating that in 
that region the velocity and temperature fields depend 
only on a single coordinate, namely, the distance from 
the wall. Thus, the fluid passing through the lower part 
of the flow passage appears to be unaware of the 
inclined upper boundary, which is not surprising in 
view of the narrowness of the module. 

Attention is now turned to the distribution of the 
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h 

FIG. 6. Isovels and isotherms for a = 40” and c/h = 0 and 1; (I@),,,~, = 2.25, 1.81 and (0/O,),,, = 1.63, 1.43. 

mass flow in the cross section. In this connection, let r&, 
denote the mass flow in the triangular region defined 
by the corrugations and bounded below by JJ = c. 
Also, let the total mass flow in the cross section as a 
whole be denoted by ni. Thus, the ratio tia/ni gives the 
fraction of the mass flow which passes through the 
triangular region, and 1 - r&/k is the fraction passing 
through the clearance gap. 

Figure 7 is a plot of k&i vs c/h for a = 20 and 90”. 
Also shown in the figure is a dashed line which depicts 
how the ratio of the triangular area A* to the total 
cross sectional area A varies with c/h. The equation of 
this line is 

A,/A = (1 + 2c/h)-‘. (18) 

As expected, the fraction of the mass flow passing 
through the triangular region decreases as the clear- 
ance gap increases. Furthermore, the sharper dropoff 
of n&/k for a = 20”, relative to that for 90”, is entirely 
reasonable. 

Of particular interest in Fig. 7 is the comparison of 
the ti&i curves with the curve for the area ratio AJA. 
It can be seen that there is a range of c/h, beginning at 
cfh = 0, where rir,/ti > AJA. Whereas this finding 
may appear surprising, it can be made physically 
plausible as follows: for small clearance gaps, the 
velocities in the entire clearance space are dominated 
by the retarding action of the lower wall, so that the 
flow in the space is disproportionately small compared 
to its area. As the clearance grows larger, the velocities 
in the clearance space are freed from the wall domin- 
ance. Indeed, the general openness of the clearance 
space, compared with the constraints imposed by the 
inclined wall of the triangular space, attracts a dispro- 
portionately large share of the flow. 

PERFORMANCE EVALUATIONS 

In evaluating the characteristics of an augmented 
heat-transfer surface, it is standard practice to com- 
pare its performance to a related unaugmented surface. 
In the present instance, it is natural to compare the 
corrugated-wall duct to a parallel plate channel. As 
will be demonstrated shortly, such comparisons will 
provide perspectives on the role of the parameters 
a and c/h which characterize the corrugated duct 
geometry. 

.In general, performance comparisons are made 
relative to a specific goal and for prescribed con- 
straints. For example, in a flat plate solar collector, it 
may be desired to minimize the temperature of the 
collector plate in order to control extraneous heat 
losses. To attain this objective, a corrugated-wall duct 
may be considered in lieu of a parallel plate channel. 

I 

.E 
\ 

.E” .5 

.25 

I I I I 
.25 .5 .?5 I 

c/h 

FIG. 7. Cross sectional distribution of mass flow. 
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The wall temperatures of the two types ofducts may be 
compared for the condition that the following quan- 
tities are the same in the two cases (1) heat input to the 
fluid per unit axial length; (2) mass flow rate of the 
fluid; (3) pumping power; (4) spanwise width and (5) 
streamwise length. A performance analysis directed at 
the aforementioned goal will now be carried out, 
subject to the just listed constraints. 

To begin, note may be taken of the definition of the 
pumping power P 

P = (Ci/p)Ap. (19) 

Then, with conditions (2), (3) and (5), it follows that the 
axial pressure gradient dp/dz is the same for the two 
types of ducts. Furthermore, smce U = ni/pA, the 
friction factor equation (13) shows that the value of 
(fRe)/ADz is the same. If the subscript 0 is used to 
identify the parallel plate channel and the corrugated 
duct is unsubscripted, then 

fRe 
=p 
(fR&. 

(20) 

If the interplate spacing of the parallel plate channel 
is H, then D,, = 2H, A/A, = (c+ih)/H, and D,JD, 
follows from equation (2). With these inputs, equation 
(20) becomes 

H W Re)df Re -_= 
h [l + cosec(a/2)12 

(21) 

Equation (21) provides the geometrical relationship 
between the two types of ducts that is consistent with 
the given constraints. For given values of a and c/h, 
f Re can be read from Fig. 3 ; also, (fRe),, = 96. With 
these, H/h follows directly from equation (21). The 
geometrical relationship given by equation (21) will 
now be employed in the comparative heat-transfer 
analysis for the two ducts. 

The temperature ratio expressed by (25) has been 
plotted as a function of c/h in Fig. 8, with the 
corrugation angle a as the curve parameter. It is seen 
from the figure that for the range investigated, the 
temperature of the corrugated surface is generally 
lower than that of the heated wall of the parallel plate 
channel. An interesting feature of the results is that 
there is a minimum value of the wall temperature for 
each corrugation angle, with the c/h at the minimum 
increasing as the angle increases. For a = 20’, the 
minimum occurs near c/h = 0, while for a = 90”, the 
minimum is at c/h 2: 0.57. The existence of these 
minima is an aid to design. 

For the heat-transfer analysis, attention will be 
focused on the same heating condition as in the first 
part of the paper -uniform heat input Q’ per unit axial 
length at the upper surface and adiabatic at the lower 
surface. If S denotes the surface area of the corrugated 
wall and Se is the surface area of the heated wall of the 
parallel plate channel, then, with conditions (4) and (5) 

The reductions in wall temperature corresponding 
to corrugated-wall ducts with small a and small c/h are 
major. They are, however, bought at the price of 
substantial increases in heat-transfer surface area. 
According to equation (22), S/S, = 5.76 and 2.92 for 
a = 20 and 40”, respectively. Thus, there is a clear first- 
cost penalty which has to be offset by the greater 

S/S, = cosec(a/2). (22) 

Furthermore, since the Q’ values are the same for the 
two cases 

(j/40 = So/S. (23) 

The Nusselt number for the corrugated-wall duct 
has already been defined in equation (16), and a similar 
definition applies for the parallel plate channel [the 
subscript cw (corrugated wall) is replaced by w]. Upon 
ratioing the Nusselt number definitions and using 
equations (22) and (23) there is obtained 

LJ 
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(TC, - T*)I(T, - Tb)O FIG. 8. Wall-to-bulk temperature ratio for corrugated and 

= (Nu,/Nu)(D,/D,,)sin(a/2). (24) parallel plate ducts. 

Next, it may be noted that DJD,, = D,/2H and that 
equations (2) and (21) respectively express D,/h and 
H/h. When these substitutions are introduced into 
equation (24), there emerges 

2(Nu,/Nu)sin(a/2) 

(T, - I’& = [4( 1 + cosec(a/2))(fRe),/fRe]1’3 

!25) 

Equation (25) compares the wall-to-bulk tempera- 
ture rise at the corrugated wall with that at the heated 
wall of a parallel plate channel. Since conditions (1) 
and (2) yield equal values of Tb in the numerator and 
denominator of equation (25), it follows that the ratio 
(T,, - Tb)/( T, - T& provides a direct comparison of 
the wall temperatures for the two cases. In particular. if 
the ratio is less than one, then the corrugated-wall duct 
is successful in fulfilling the original objective of 
reducing the temperature of the heated wall. The 
values of Nu andfRe needed to evaluate equation (25) 
are available from Figs. 4 and 3 for given a and c/h, and 
Nu, = 5.385 [l], (f Re), = 96. 
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operating efficiency afforded by the lower temperature 
of the wall. The resolution of this economic trade-off is 
beyond the scope of this paper. 

At larger corrugation angles, both the temperature 
reductions and the area increases are more modest. 
For c( = 90”, the minimum value of the temperature 
ratio is 0.76 while the area ratio S/S, = 1.41. If the 
reduction in the temperature ratio were to result in a 
decrease of the surface temperature of 25-30”F, then 
an economic analysis would appear to be justified. 

It is useful to complement the foregoing pre- 
sentation of heat-transfer results with information 
about the geometrical features of the comparison of 
two types of ducts. In Fig. 9, the cross sectional areas 
for fluid flow, A and A,, respectively, are ratioed and 
plotted as a function of c/h. As expected, the flow cross 
section for the corrugated duct is generally larger than 
that for the parallel plate channel, with greater differ- 
ences in evidence at smaller corrugation angles. For 
the larger angles, the differences are remarkably small. 
For example, for GL = go”, the maximum value of A/A,, 
is about 1.09, and in the range of small c/h it is seen that 
A/A0 < 1. 

Although the cross sectional enlargement of the 
corrugated duct, relative to the channel, is moderate, 
the differences between the overall heights may be 
greater. To examine this matter, the overall height of 
the corrugated duct (c + h) is ratioed with the height H 
of the channel and the ratio plotted in Fig. 10. The 
figure shows that for the parameter range investigated, 
the height of the corrugated duct exceeds that of the 
parallel plate channel by at least 50%. For example, for 
CI = 90” and for c/h corresponding to the minimum 
temperature ratio of Fig. 8, the value of (c + h)/H is 
1.58. Thus, if compactness were to be a factor, then 
there would be some reservations about the use of a 
corrugated duct. 

Up to this point, the performance analysis and 
evaluation has been aimed at minimizing the surface 
temperature subject to the constraints listed just before 
equation (19). Other objectives and other constraints 

c/h 

FIG. 9. Cross sectional area ratio for corrugated and parallel 
plate ducts. 
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FIG. 10. Duct height ratio for corrugated and parallel plate 
ducts. 

can be considered and, to provide further perspectives, 
another situation will be briefly examined. Suppose 
that it is desired to minimize the pumping power P 
while maintaining the surface temperature the same 
along with the previously listed quantities (I), (2), (4), 
and (5). By performing an analysis similar to that 
described earlier in this section, an expression can be 
derived for P/P, as a function of a and c/h. Numerical 
evaluation of that expression yields the results shown 
in Fig. 11. Examination of the figure indicates that 
appreciable reductions in pumping power can be 
achieved with the use of a corrugated-wall duct. 
Especially large decreases are possible when a and c/h 
are small, but at the price of a large increase of surface 
area. On the other hand, at a larger angle such as 
a = !W, the pumping power may be reduced by more 
than 50% with moderate increases of surface area. 

CONCLUDING REMARKS 

This paper has described a two-part study of 

0 I I 1 
0 .2 .4 .6 .% I 

c/h 

FIG. 11. Pumping Power ratio for corrugated and parallel 
plate ducts. 
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laminar flow and heat transfer in a spanwise-periodic was also shown that if pumping power is to be 
corrugated duct, encompassing both basic results and minimized, a corrugated duct can be highly effective, 
performance evaluations, Among the basic results, the but again with greater surface area and duct height. 
friction factor and Nusselt number were presented as a 
function of the dimension ratio c/h for parametric Acknowlrdgemenr - The research was performed under the 
values of the corrugation angle a. The behaviors of both auspices of the National Science Foundation (ENG-7518141 

fRe and Nu were affected bv variations of the eauiva- Ao”. 
lent diameter D, as well as by the respective variations 
of the pressure gradient and the heat-transfer coef- 
ficient. Isovel and isotherm maps showed that the cross 
sectional variations of velocity and temperature be- 1. 
come more gradual as the clearance gap increases; the 
respective peak values also decrease relative to the 2. 

corresponding averages. Furthermore, with increasing 
clearance, a greater fraction of the total mass flow 3. 
passes through the clearance space, but at small 
clearances the flow through the clearance space is 4. 
disproportionately small. 

The performance evaluations were focused on the 
comparison of corrugated-wall ducts with the parallel 5. 
plate channel. Primary attention was given to the 
minimization of the temperature of the heated wall. It 
was demonstrated that corrugated ducts can yield 
substantially lower wall temperatures, but at the price 6. 
of additional surface area and greater duct height. It 
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CARACTERISTIQUES DU TRANSFERT THERMIQUE ET DE L’ECOULEMENT 
DANS DES CONDUITES A CORRUGATION PERIGDIQUE 

Rbnmd II s’agit dune etude analytique de l’ecouiement laminaire et du transfert thermique dans des 
conduites dont la section droite est limitee par une paroi corrugee de faGon periodique tandis que t’autre 
paroi plane est parallele a la premiere. Dans une premiere partie on itudie l’ecoulement et le transfert 
thermique tandis que dans la seconde partie on utilise et on iclaire les rtsultats pour ivaluer les performances 
et pour comparer. Les risultats numeriques concernent les nombres de Nusselt, les facteursde frottement, les 
isovitesses, les isothermes et les distributions de debit massique dans la section droite, avec comparaison avec 
la conduite & deux parois planes et paralleles. On montre que si la temperature de la conduite doit &tre rendue 
minimale, comme dans les capteurs solaires a air, une conduite corrugu&. peut &re tres e&ace mais au prir 

dun accroissement de surface et dune plus grande hauteur de conduite. 

WARMEUBERGANG UND FLUSSIGKEITSSTROM IN 
KANALEN MIT PERIODISCH GEWELLTEN WANDEN 

Zusammenfasaung-In einer analytischen Studie wurden Striimung und Warmeiibergang in Kanalen im 
laminaren Bereich untersucht ; der Striimungsquerschnitt ist auf einer Seite von einer Wand begrenzt, die auf 
der ganzen Breite mit periodischen Wellen versehen ist; die andere begrenzende Wand steht parallel zur 
gewellten Wand und ist eben. Die Unt~suchung besteht ans 2 Teilen, von denen der erste auf die 
Bereitstellung grundlegender Ergebnisse fur den Warmeiibergang und die Striimung abzielt, wahrend im 
zweiten Teil diese Ergebnisse zur Durchfiihrung von Leistungsberechnungen benutzt und vergleichend 
erlautert werden. Die grundlegenden Ergebnisse werden numerisch bestimmt und beinhalten Nusselt- 
Zahlen, Widerstandsbeiwerte, Linien gleicher Geschwindigkeit und Isothermen sowie die Massenstromver- 
teilung iiber den Querschnitt. Bei den Berechnungen wurden Vergleiche angestellt zwischen einem Kanal mit 
gewellter Oberflache und einem Kanal aus parallelen ebenen Platten. Es wird gezeigt, daR dann, wenn die 
Temperatur der Kanalwand klein gehalten werden soll, wie zum Beispiel bei Luft-Sonnen-kollektoren, ein 
Kanal mit gewellter Wand sehr wirkungsvoll sein kann; der Preis hierfiir ist jedoch zusatzliche Qbe&iche 

und gr6Bere Kanalhohe. 
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TEWlOO~MEHHbIE ki rM)JPOj@IHAMMYECKME XAPAKTEPMCTMKW 
TOQPWPOBAHHLIX IIOFIEPEK I’IOTOKA KAHAJIOB 

AHHoTaUnn- npOBeaeH0 aHaJUiTB'IeCKOe HCCJleDOBaHlie JlaMHHapHOi-0 Te'ieHWl hi TeUJlOIle~HOCZi B 

KaHanaX, OnHa H3 CTeHOK KOTOPblX rO$p&lpOBaHa LIOIlept?K IIOTOKP, a napannenbHan eii mema 
I(B.WIeTCII rJIa.IlKOfi. PaGoTa COCTOIIT H3 nByX VaCTefi. B IlepBOii WCTH IIpellCTaBneHbI OCHOBHbIe 

~3,VIbTaTbIIIOTeUJlOO6MeH,'W W.QpOLWiHaMHKe,a 80 BTOpOii 'IaCTH LWHbl OUeHKH 3TNX p3yJlbTaTOB 

II npoeeneH0 cpaeHeHue c npyrmm naHHbxmi. B pe3ynbTaTe sfcnerifmx ~XVX~TOB nonyrefm 3fiaqexm 

mcen HyCCenbTa,xo3~~riueenTo5 ~peHun,si3oTaxII li a3oTepMbi. a Taxxe pacn~~e~e5~~ Macco5oro 

FIOTOKa n0 nOne~YHOMy Ce4eHHK). npOBefieH0 CfEiBtIeHEie MemAy KaHanOM C r~p~~B5HHO~ 
cTeHKoii w nn~Ko-napanne~bHbIM KaHanohf. flOKa3aHO. wo B cnyqae ecm TemepaTypa cTeHoK 

KaHiiJla ,lOJEXHa 6bITb M~H~MH3H~BaHa, KaK HaIipHMep, B COJIHe'iHOM XOJIJIeKTOpe C 503LlYUIHbiM 

OXJEWeHIieM,~O~pHpO55HHbIe KaHaJlbI IIBJIIIIOTCCR 6oiee 3~@eKTHBHbIMW,O~HaKO 38 W&T yi?eJlIi'leHEiII 

nnouami noaepxH0c-m A BblcoTbI KaHana. 


